Neuropeptide Y inhibits ciliary beat frequency in human ciliated cells via nPKC, independently of PKA.

نویسندگان

  • Lid B Wong
  • C Lucy Park
  • Donovan B Yeates
چکیده

The intracellular mechanisms whereby the inhibitory neurotransmitter neuropeptide Y (NPY) decreases ciliary beat frequency (CBF) were investigated in cultured human tracheal and bronchial ciliated cells. CBF was measured by nonstationary analysis laser light scattering. NPY at 1 and 10 μM decreased CBF from a baseline of 6.7 ± 0.5 ( n = 12) to 6.1 ± 0.5 ( P < 0.05) and 5.8 ± 0.4 ( P < 0.01) Hz, respectively. Prior application of PYX-1, an NPY antagonist, prevented the decreases of CBF induced by both doses of NPY. Two broad protein kinase C (PKC) kinase inhibitors, staurosporine and calphostin C, also abolished the NPY-induced decrease in CBF. The NPY-induced decrease in CBF was abolished by GF 109203X, a novel PKC (nPKC) isoform inhibitor, whereas this decrease in CBF was not attenuated by Gö-6976, a specific inhibitor of conventional PKC isoforms. Because pretreatment with NPY did not block the stimulation of CBF by forskolin and pretreatment with forskolin did not abolish the NPY-induced inhibition of CBF, this NPY receptor-mediated signal transduction mechanism appears to be independent of the adenylate cyclase-protein kinase A (PKA) pathway. Inhibition of Ca2+-ATPase by thapsigargin also prevented the suppression of CBF induced by subsequent application of NPY. These novel data indicate that, in cultured human epithelia, NPY decreases CBF below its basal level via the activation of an nPKC isoform and Ca2+-ATPase, independent of the activity of PKA. This is consistent with the proposition that NPY is an autonomic efferent inhibitory neurotransmitter regulating mucociliary transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soluble Adenylyl Cyclase Is Localized to Cilia and Contributes to Ciliary Beat Frequency Regulation via Production of cAMP

Ciliated airway epithelial cells are subject to sustained changes in intracellular CO(2)/HCO(3)(-) during exacerbations of airway diseases, but the role of CO(2)/HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) in ciliary beat regulation is unknown. We now show not only sAC expression in human airway epithelia (by RT-PCR, Western blotting, and immunofluorescence) but also its specific localiz...

متن کامل

Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells.

Airway ciliary beat frequency regulation is complex but in part influenced by cyclic adenosine monophosphate (cAMP)-mediated changes in cAMP-dependent kinase activity, yet the cAMP concentration required for increases in ciliary beat frequency and the temporal relationship between ciliary beat frequency and cAMP changes are unknown. A lentiviral gene transfer system was developed to express a f...

متن کامل

Disrupted ciliated epithelium shows slower ciliary beat frequency and increased dyskinesia.

Ciliary function studies for the diagnosis of primary ciliary dyskinesia (PCD) are usually performed on nasal brush biopsy samples. It is not uncommon to find disrupted epithelial strips of tissue in these samples, and occasionally throughout a sample. The aim of the present study was to determine if cilia on disrupted ciliated epithelial edges beat with a normal pattern and frequency similar t...

متن کامل

Chronic ethanol downregulates PKA activation and ciliary beating in bovine bronchial epithelial cells.

Previously, we reported that ethanol (EtOH) stimulates a rapid increase in ciliary beat frequency (CBF) of bovine bronchial epithelial cells (BBEC). Agents activating cAMP-dependent protein kinase (PKA) also stimulate CBF. EtOH stimulates BBEC CBF through cyclic nucleotide kinase activation. However, EtOH-stimulated CBF is maximal by 1 h and subsides by 6 h, returning to baseline by 24 h. We hy...

متن کامل

Characterization of an A-kinase anchoring protein in human ciliary axonemes.

Although protein kinase A (PKA) activation is known to increase ciliary beat frequency in humans the molecular mechanisms involved are unknown. We demonstrate that PKA is associated with ciliary axonemes where it specifically phosphorylates a 23-kDa protein. Because PKA is often localized to subcellular compartments in proximity to its substrate(s) via interactions with A-kinase-anchoring prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 275 2  شماره 

صفحات  -

تاریخ انتشار 1998